VARIATIONAL SOLUTION OF THIRD
BOUNDARY-VALUE PROBLEM OF
HEAT CONDUCTION

N. M. Tsirel'man and D. M. Yanbulatov UDC 536.2.01

1t is shown that the Ainola variational principle can be used to solve the third boundary-value
problem of heat conduction. '

L. Ya. Ainola has given a variational principle [1] for solution of the first and second heat-conduction
boundary-value problems. Here we shall show that this principle can be used to solve the third linear one-
dimensional boundary-value problem which is formulated as
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(m =1, 2, 3 for a plate, cylinder, and sphere, respectively) under the initial condition
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and the boundary condition
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Thus we consider the variation of the temperature T only in the x direction and during the time T when the
thermal conductivity A and the bulk specific heat cp depend on x and the body contains a bulk heat-evolving
source of power qy(x, 7). The convective heat-transfer coefficients @, and oy are assumed to be constant,
and the initial temperature distribution T (x, 0) = ¢(x) and the variation of the temperatures in the ambient
medium T31 (T) and Taz(T) are assumed to be continuous functions that together with their first derivatives
satisfy the congruence conditions

2 @) ¢ (@) + oy [Ta, (0) — ¢ (@)] = 0, (5)
— A (0) @' (b) -+ o, [Ta, (0) — ¢ (H)] =0. (6)
The lack of such congruence in the formulation of the problem is easily remedied by the computational
method described below.

We introduce the new unknown function u(x, 7) such that
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and then reduce problem (1)-(4) to homogeneous initial and boundary conditions:
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a<x<<bhb t>0, m=1, 2, 3,

u(x, 0) =0, a<<x<<b, (24
— A (a) a_u%i (e, =0, >0, (3"
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In accordance with [1] we set up the functional in u for the finite temporal [0, t] and spatial [a, b] inter-
vals:
¢

1= | j{ L [ﬁ-<x)xm‘l»aif;-'f)—J oy Qe
0 a

X ok g ot
— 2f (x, O} ¥ u (x, {— 1) dydr. (9
Integrating the first term on the right side of (9) by parts with respect to x and using (3"} and (4') we obtain
t b
I sl . 5 X, i
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We represent the variation of u(x, 7) by z(x, 7) and make use of the convolution-symmetry property to ob-
tain the following form of variation for the given functional:
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Next, we integrate the first term in (10) by parts with respect to x:
h
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and on the basis of the convolution symmetry also establish that
) ! 4
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0 0

Then (10) takes the form
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du(a, 1)
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Ox
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Considering (11), we conclude that the function u(x, 7) satisfying the condition 6J =0 for ¢ < x<b, 0<7r
<t is a solution of the problem (1')-{4').

Following L. V. Kantorovich [2], we seek a solution of (1')-(4') in the first approximation in the form
u(x, ©)= g P () (12)

where g(x) is a known function of the coordinates that satisfies conditions (3')-(4'), while ¥(r) is the de-
sired unknown time function satisfying the condition §(0) = 0.

It is not difficult to show that for our problem in which u(x, 7) is determined in the form (12), the
Euler equation (the condition for stationarity of the functional) will be

Ap(t—1)—BY (t—7) — C(t—1) =0,

where
) b
A= [ @ xg' @] () dx;

o

a

b
B = s cp (x) x™71gt (x) dx;

b
C(t) = g fx, ©) g(x) x" tdx.

Thus in first approximation the solution of (1)-(4) will have the form
T(x 0 =g®$@ + ¢+ [Ta ) — T, (0)] X
(b —x)® (2x -+ b— 3a) (x—a)? (3b—a—2x)
(b—a)* (b —a)? '
The succeeding approximations are found in like manner.

+ [Ta. (0 — T, (0)]

To illustrate the application of the above, let us solve the one-dimensional symmetric problem of
heat conduction when the initial temperature T, of the body and the ambient temperature Ty are constant
for a body with constant thermophysical properties A, cp having no source (sink) qy(x, 7). Here we
assume initially that the temperature of the medium varies from T, to Tg over a small time interval 0
=T =71, onlythen (r, = 1) becoming constant:

J To—Ta
K
l T, 1,<r.

T, (1) = T—r)+T,, 0Lt

Thus the congruence conditions (5), (6) are provided. Next we introduce the dimensionless coordinate 5
=x/1,, the dimensionless time T = ar/l%(a = ?\/cp), and the dimensionless intensity of heat transfer (the
Biot number) Bi = @i /A and assume that T(n, ™ =u@, T) + Ty (r). Then our problem takes the form

1 9 du(n, ) ou(m, ) ;s
pR——— m=1 ’ —_ ’ N

Wt oy [7\ an ]_ P + Ty (1), »(13)

—l<y<l, >0, m=1, 2, 3,
u(m, 0)=0, —1<n<l, (14)

ou(—1, 1 | L. S a T
— Biu(—1, 1) =0, 10, 15)
a—”g;’iﬁs-&u(l, H=0, T=0. (16)

It can be shown that solution of the given problem when

- 2 _
w(n, 1) = (?{“ *H“*lz) V(1)
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is chosen as the first approximation is equivalent to solution of the following Euler equation:
VO @) = — L T, an
2m ‘

where
m(m -4) Bi(Bi ~m +2)

M B 2 ) Bl (m g (m ).
R B Ul etV R WP
Ta(r) = To ‘ o
0, > T,

Solving (17), we obtain y{@). We shall not give the co__mputational relationships separately for 0 = T= ?0
and Fo =7 but shall just give the formula for ® when 7; — 0 (to permit comparison with the classical solu-
tions, and owing to space limitations):

- Tm 1T w2 . s
O V= =gt =y (E‘ F 17 | exp(— ). (18)

Similarly, taking

ha 2 o‘ f N 2 Lo P g
wn D= (e T @ ( — ~.—z~—n-) s (0,
for the second approximation, we obtain
- m=6 Bi D T,-T, -
i - _— — eXP{— p; T) — (19}
¥y (1) s Bi2 F — [(HL By exp(— w1
(s, — B) exp (— 5 7)) ,
b, () = - (m--6)(m—-8) BiBi+~2(m-=-4)] Ta—T, [,/ exp (— iy T — 20)

8 F Ho—1y
— W2 €Xp (— pe D]
after carrying out the corresponding steps for 7, — 0. In the formulas for y{r),

D = (4— m) Bi* -~ 2 (4— m) (m —6) Bi +-8 (5m --22),
F = 3Bi* — 6 (m --6) Bi + (m —-6) (5m —-29),

g _4im=2) (m=8) (Bi+2) [Bi+2 (m -4

. D ’
“1} - w (2B - 4 (m =-5) Bi 1 (m - 4) (m - 8) =
He
A , —8 e
l/ [281— +4{m-=5) Bi + (m—4) (m —,—-8)}2~— Tfﬁ% X

“ BIB 2 (m A F -

The quantities u*® in the first and second approximations coincide exactly with the exact values of the first
root of the characteristic equations _of heat conduction tabulated in [3]. The second root of the character-
istic equations given in [3] differs negligibly from u-® (the discrepancy decreases from 6 to 0.1% as Bi de-
creases).

Anglysis of the function ® = @, 7) of the second approximation for monotonicity in the region |zl
= 0.5 and comparative digital-computer calculations show that the approximate values ® agree well with
the exact values @T for all Bi when

> P_mi‘i;_m (M“'«’\’)HZ~M5J,

Mo — Uy 2 1P (M + N) p— MB
where
-—2~*r'1~7l2
Me =B D Ne(meo8Biom-8) (—— +1—‘7]2) 2.
- Bi2 v N=(m-=-8)(Bi--2m —8) | 5 ;

In the region Inl > 0.5 a second-approximation error of less than 5% is observed beginning at T
= 0.05,
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For the Bi = Bifr) case, which is of practical importance in thermophysics, if we use the above
approach and symmetrize the smooth function Bi{r) at the point t on the interval [0, 2T], as we did in [4],

we obtain
u(y, T =— [ _2;-—%1——1}2] m~2§—4 exp [-—-ﬁ%ﬂj v (2) dz] X
o

Y v
( . m+4
><0j v(y) Ta(y) exp [ > 5\ v (2) dz] dy,

in the first approximation, where

Bi{z) [Bi(z2) +m 2]
2Bi*(2) + 2(m-+-14) Bi(z) - (m - 2) (m + 4)

Problems of this sort have so far been solved only for certain Bi = Bifr) dependences [5].

v(2) =

To conclude we note that a separate paper will be devoted to analytic evaluation of the order of con-
vergence and of the solution error for the approximate method used.

NOTATION

@ =[T(x, 7)—T,l/[Ta—Tland T(x, 7), Tyand Ty are the dimensionless and dimensioned running tem-
peratures, the initial temperature of the body, and the
ambient temperature;

xand 9 = x/1y, 1, are the dimensioned and dimensionless coordinates of
a point in the body and the characteristic length of the
body;

Tand T = ar/l} are the dimensioned and dimensionless time; .

a=\A/ cp and A, cp are the thermal diffusivity and thermal conductivity,
and the bulk specific heat;

qylx, T) is the power of the bulk heat-evolution source;

aand Bi =aly/A are the heat-transfer coefficient and the Biot number.
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